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Abstract 

The process of diagnosing dementia conditions, especially Alzheimer’s disease, and the cognitive tests that are 
involved in this process, are important areas of study. Everyday Cognition (ECog) is one test that can be used as part of 
Alzheimer’s disease diagnosis to measure cognitive decline in different areas. In this study, we investigate two versions 
of the ECog test: the study partner reported version (ECogSP), and the patient reported version (ECogPT). We com-
pare these, using statistical analysis and machine learning techniques, to create classification models to demonstrate 
the progression in ECog scores over time by using the Alzheimer’s Disease Neuroimaging Initiative longitudinal data 
repository (ADNI); participants are classed with having normal cognition, mild cognitive impairment, or Alzheimer’s 
disease. We found that participants who are diagnosed with Alzheimer’s disease at baseline, or during a subsequent 
visit, tend to self-report consistent ECogPT scores over time indicating no change in cognitive ability. However, study 
partners tend to report higher and increasing ECogSP scores on behalf of participants in the same diagnosis category; 
this would indicate a degradation in the participant’s cognitive ability over time, consistent with the progress of Alz-
heimer’s disease.

Keywords: ADNI, Alzheimer’s disease, Cognitive tests, Data analytics, Dementia, Everyday cognition, Longitudinal 
study, Machine learning
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Introduction
Dementia is a progressive condition that affects the cog-
nitive function of approximately 50 million people world-
wide, with almost 10 million new cases being diagnosed 
every year [38], making it a key focus of healthcare insti-
tutions globally. Currently there is no cure for dementia 
or its leading condition—Alzheimer’s disease (AD), but 
when diagnosed early there are intervention manage-
ment plans available that can help patients cope with 
some of the symptoms [23]. Consequently, the detection 
and diagnosis of AD is an important objective for those 
studying neurodegenerative conditions.

A vast number of medical assessments have been cre-
ated or adapted to detect AD, including biological tests 
such as positron emission tomography (PET), magnetic 

resonance imaging (MRI) scans, and cerebrospinal fluid 
(CFS) measurements taken from a lumbar puncture. 
However, most commonly, the diagnosis of AD is made 
by clinicians according to various cognitive tests. These 
are memory or cognitive ability-based questionnaires 
that are taken by the patient or a study partner such as 
caregiver.

Several research studies, using AD-based data, have 
studied the relationship between different combina-
tions of medical tests as well as their diagnostic perfor-
mance [3, 5]. These Studies have contributed to a better 
understanding of AD and the building of an effective and 
comprehensive system for its diagnosis. Many different 
cognitive tests have been compared to a wide variety of 
covariates, different biomarkers, and risk factors [10, 13, 
33]. Additionally, different modelling approaches and 
data analytical methods have been used to identify the 
relationship between these tests and measure the effec-
tiveness of each test at modelling the progression of AD 
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[19, 24]. Still, there are many different approaches yet 
to be attempted and more information to be uncovered 
about the relationships between these cognitive tests and 
AD progression.

This research investigates the longitudinal relationship 
between two versions of the commonly used Everyday 
Cognition (ECog) test, a cognitive test that was found to 
be comprehensive and responsive to change over time 
[14]. The ECog test is designed to measure cognitive 
decline in six different domains and is typically answered 
on behalf of the patient by a knowledgeable informant—
we will refer to this version of the test as the Everyday 
Cognition Study Partner (ECogSP) test. Alternatively, 
the questions can be answered directly by the patient—
we will refer this to as the Everyday Cognition Patient 
(ECogPT) version. However, previous studies have dem-
onstrated that self-reported cognitive decline from a 
patient with AD is often less accurate than their study 
partner’s-reported cognitive decline assessment [7, 29].

While ECog was originally designed as an informant-
based test to overcome the well-known problems with 
self-reported cognitive decline, we could not find any 
studies that use in-depth correlation statistical analy-
sis on a longitudinal dataset to examine the difference 
between test versions. Therefore, the aim of this study 
is to compare the patient reported ECogPT score to the 
study partner reported ECogSP score for the purpose 
of detecting cognitive decline over time. This analysis 
therefore re-iterates the differences between Informant-
reported and self-reported cognitive testing and spe-
cifically shows how ECogSP and ECogPT scores differ 
overtime for subjects in different diagnostic groups.

We used participants from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) data repository with 
mild cognitive impairment (MCI) and AD [25]. The 
methodology is based on data analytics, in particular 
correlation, statistical, descriptive analyses and super-
vised learning. The research question we try to answer 
is: “How the different versions of the Everyday Cogni-
tion test scores indicate the progression of dementia 
over time for patient with different baseline diagnoses?” 
We have created a number of visualisations to demon-
strate the changes in ECogPT and ECogSP scores over-
time for patients grouped by different baseline diagnoses. 
Repeated incremental pruning to produce error reduc-
tion (RIPPER) [9], partial C4.5 decision list (PART) [16], 
C4.5 decision tree (C4.5) [28], and Random Forest [6] 
machine learning algorithms were used to build models 
to predict if a patient diagnosed with MCI at baseline 
will progress to AD within 48  months based on ECog 
scores and demographic features. To overcome the issue 
of class imbalance and improve model performance, the 

Synthetic Minority Oversampling Technique (SMOTE) 
[8] was used to balance the dataset.

“Literature review” section summarises a selection of 
research works related to longitudinal data analysis using 
data from the ADNI. “Dataset description” section pre-
sents the dataset, features, and the pre-processing done. 
“Methodology” section covers the methodology fol-
lowed and “Data analysis” and “Machine learning results” 
sections show the results analysis and findings using 
machine learning models. In the last section we provide 
our conclusions.

Literature review
Moradi et al. [24] created a model to predict the scores 
of the Rey’s Auditory Verbal Learning Test (RAVLT) [30, 
32] based on grey matter density features derived from 
MRI scans in the ADNI dataset. The authors removed 
all observations with missing RAVLT scores and several 
observations that had outlier scores. Elastic net linear 
regression (enlr) [39] was then used to model RAVLT 
immediate and RAVLT percent-forgetting scores using 
whole brain grey matter density maps; these consisted 
of 29,852 features for each participant. The models were 
evaluated using 100 runs of tenfold cross validation [27]. 
Across all runs, the averages of the correlation score 
(R), coefficient of determination (Q^2), and mean abso-
lute error (MAE) were found to be: R = 0.50,  Q2 = 0.25, 
MAE = 7.86 for RAVLT immediate, and R = 0.43, 
Q^2 = 0.185, MAE = 25.53 for RAVLT percent-forgetting. 
The author also considered data subsets that included 
only AD, or only MCI participants, as well as different 
combinations of the three categories. Interestingly, it was 
found that removing the MCI participants improved the 
performance of the model.

Ito et al. [19] used a mixed effect model [4] to predict 
Functional Assessment Questionnaire (FAQ) scores 
[26]. Again, the ADNI’s longitudinal data was used, but 
this time features such as MMSC and CDR-SB scores, 
disease state, age, ApoE4 genotype, sex, and MRI-based 
biomarkers such as hippocampal volume, were included. 
The authors justified using a linear model to predict FAQ 
scores as they were only looking at three years’ of data in 
the ADNI1 dataset and so expected the progression of 
FAQ scores to be relatively linear in this timespan. The 
authors noted that the distributions of FAQ scores, par-
ticularly around the end points (0 and 30), were not nor-
mal and would cause problems when fitting their model. 
Consequently, the standard approach was compared to a 
censored method where FAQ scores would be scaled and 
transformed. The models were evaluated by simulating 
500 datasets based on the original.

Davatzikos et  al. [10] studied the longitudinal trend 
in MRI and cerebrospinal fluid CSF biomarkers in two 
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groups: MCI participants who in a follow-up visit con-
verted to AD (MCI-C), and MCI participants who did 
not convert (MCI-NC) within the ADNI dataset. The 
authors used a marker derived from MRI data named 
SPARE-AD which represents a pattern of brain atrophy 
that has been linked with AD [11]. SPARE-AD ranges 
between 1 and -1, with higher values representing more 
severe brain atrophy. In this study, MCI-C partici-
pants had an average SPARE-AD score of 0.65 ± 0.44, 
and MCI-NC had an average of 0.22 ± 0.74. Using the 
WEKA platform [18], the authors built linear support 
vector machine-based models to distinguish between 
MCI-C and MCI-NC participants based on the SPARE-
AD score as well as the SPARE-AD and CSF biomark-
ers: Aβ42 and t-tau. The models were evaluated using 
fivefold cross validation. The SPARE-AD only was the 
only model that achieved a sensitivity towards MCI-C 
of 94.7% and specificity of 37.8%. The model that also 
included Aβ42 and t-tau achieved a sensitivity of 84.2% 
and a specificity of 50%. It should be noted that the data 
of 239 patients with follow up visits was used for the 
SPARE-AD model; whereas the data for 120 patients 
only was used in the SPARE-AD and CSV model since 
participants with missing Aβ42 and t-tau values were 
removed.

Evans et  al. [13] used data from the ADNI1 study to 
compare the changes in whole brain and ventricular vol-
ume over time in AD, MCI, and CN participants. Data 
was limited to follow up visits within 12  months of the 
initial visit. A one-way ANCOVA test was used (with p 
values < 0.0005) to determine that there was a significant 
difference in brain atrophy rates between participant 
groups when accounting for age, gender, and baseline 
volume. The authors also considered the cognitive tests 
ADAS-Cog [31] and MMSE [15] to determine if they 
could be associated with changes in whole brain and ven-
tricular volume. They concluded there was strong evi-
dence of an association between change in MMSE scores 
and change in whole brain volume in AD (p = 0.002) and 
MCI (p < 0.0005) participants. There was weaker but still 
significant evidence of an association between whole 
brain volume and ADAS-Cog changes in AD (p = 0.06) 
and MCI (p = 0.0001) participants.

Schuff et  al. [32] applied a linear, mixed-effect model 
on the selected data extracted from ADNI, using hip-
pocampus volume degradation (HVD) or ADAS test as 
the dependent variable to regress on time (independent 
variable). Since past measurements determine the cur-
rent measurement, the authors have also applied the 
Markov Chain model and adopted a paired model to 
investigate if additional independent variable(s), i.e. age, 
diagnosis, ApoE4 (gene), cerebrospinal fluid (CSF) bio-
markers etc., would increase the explanatory power. The 

dataset selected consists of 12  months of longitudinal 
data on 112 CN, 226 MCI, and 96 AD participants, with 
a minimum of three MRI scans. The major findings of the 
study were:

(1) The protocols adopted in ADNI for MRI measure-
ments are effective for regulating and minimising 
site-to-site variation, ensuring a high level of uni-
formity and data integrity

(2) MRI volumetric changes can be tracked over a 
short period of time, i.e. 6–12  months, and show 
that both MCI and AD participants have significant 
HVD over 6  months and this gradually increased 
over a 12 month period

(3) Faster HVD is associated with the ApoE4 (gene) in 
AD participants and lower CSF b-amyloid (Aβ1–
42) in MCI participants respectively. This also 
proves hippocampus volumetric measures to be an 
effective biomarker for tracking AD progression.

Vemuri et al. [36] selected 71 AD, 19 aMCI, and 92 CN 
participants from ADNI. The study compared the annual 
changes of MRI and CSF biomarkers to assess the dis-
crimination power among 3 groups (CN, aMCI, and AD) 
and if any correlation existed between the cognitive score 
changes and the selected biomarkers, and the relevance 
of the Apoe gene to the biomarkers’ annual changes. The 
authors chose Aβ1–42 and t-tau as the CSF biomark-
ers, and ventricular (VC) as the MRI biomarker instead 
of entorhinal cortex (EC) or hippocampus (HC) as used 
in other studies [12]. After plotting the annual changes 
of those biomarkers among the participant groups, the 
authors have drawn the conclusion that VC changes are a 
significant (p < 0.001) intergroup, but the CSF biomarkers 
are not. The study has also concluded that VC changes 
are significantly linked to cognitive score changes in 
aMCI and AD participants, The ApoE4 (gene) does play a 
role in the VC changes, but not for the Aβ1–42 and t-tau 
CSF biomarkers. However, other studies have suggested 
that abnormal changes occurred to Aβ1–42, then t-tau, 
and lastly MRI during the progression of AD [20, 21]. 
The contradictory outcome of this study prompted the 
authors to consider the possibility of the CSF biomark-
ers of the selected sample becoming abnormal before any 
clinical symptoms surfaced.

Varon et  al. [35] selected 50 AD, 89 MCI, and 49 CN 
participants, aged 55–81, from the ADNI1 dataset to 
ascertain the clinical application of visual ratings (VR) 
and volumetric measures (VM) of medial temporal 
degeneration (MTD) in dementia. The authors selected 
entorhinal cortex (EC) and hippocampus (HC), and two 
medial temporal lobe structures (MTLS) to investigate 
after researching relevant past studies; these established 
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a high degree of correlation of the MTLS in the clinical 
cases of MCI and AD [12]. A 4-point scale of 0–2 was 
adopted for VR, where 0–0.5 indicated minimal degen-
eration, 0.5–1 indicated mild degeneration, 1–2 indi-
cated moderate degeneration, and over 2 indicated severe 
degeneration, for HC and EC in this research. There are 
several notable findings after analysis:

(1) VM was better than VR-HC regarding CN and MCI 
discrimination, however, both VM and VR (HC & 
EC) had similar power in CN and AD discrimina-
tion at baseline

(2) VM (HC & EC) and VR (HC & EC) were both sig-
nificant predictors in regard to MCI progressing to 
AD, but VR-EC surpassed VR-HC and VM-EC

(3) VM-EC is better than VM-HC for predicting MCI, 
which is a similar finding to other studies [2, 22]

(4) During the early stage of AD, HC’s relevance can be 
dampened by other common medical conditions, 
i.e. depression, stroke, steroid intake, brain trauma, 
and seizures [17]

Dataset description
Since October 2004, with funding from private and pub-
lic institutions, Dr Michael Weiner has led a team con-
ducting a longitudinal study, ADNI, for the primary 
purpose of finding and validating biological markers 
to be used in AD clinical trials [1]. The study is ongo-
ing after its inception more than a decade ago, having 
been through three different National Institute on Aging 
(NIA) funding cycles (ADNI 1, 2, and 3) and a bridging 
grant (ADNI GO); it is currently funded until 2022 [1]. 
Study participants were recruited from different medi-
cal and research facilities across the US and Canada, and 
also selected from a combination of normal aging elderly 
(NL), MCI participants, and those with confirmed AD 
[37]. These participants complete several cognitive tests 
and clinical tests when required, including DNA, blood 
test, urine test, CSF, MRI, and PET [25].

The dataset was obtained from the TADPOLE chal-
lenge, which was initiated by ADNI [34]. The combined 
dataset consists of 12,742 instances where each instance 
represents an individual visit to the clinic where meas-
urements were taken. There was a total of 1907 features. 
Apart from the demographic features and those for clini-
cal visit identification, four features related to the ECog 
cognitive test have been retained: the total and memory 
scores for both the patient-based version and study part-
ner version of the test. A brief summary of the features 
selected with some basic statistics is given in Table  3 
(Appendix).

The ECog medical test was developed by Farias et  al. 
[14] to assess the cognitive degradation of the patient 
based on an interview with an informant such as the car-
egiver or a relative of the patient and asking questions 
related to the following six cognitive domains: memory, 
vocabulary and linguistic awareness, visual/spatial aware-
ness, preparation, organisation, and divided attention. 
The test began with 138 possible questions, based on 
information provided by domain experts such as clini-
cians and neurologists, then reduced to a final 39 ques-
tions with four possible answers to each question:

1 = Better or no change compared to 10 years earlier.
2 = Questionable/occasionally worse.
3 = Consistently a little worse.
4 = Consistently much worse.

Each item within the test has an individual factor 
weighting and contributes to a total score, as well as a 
score for its related cognitive domain. Scoring is based 
on a scale of 1–4, with ‘1′ being the most benign and ‘4′ 
being most severe in terms of cognitive decline. In this 
study, we have focused on the ECog Total score which 
covers all cognitive domains and the ECog Memory 
score.

ECog was initially designed to be a study partner- 
(informant) based test, however, within ADNI, the 
participant also responds to the same questions in a 
patient-based test. The aim of this study is to compare 
the informant-based ECog test to the patient-based ECog 
test, hence this study examines four different ECog test 
scores: the patient-reported memory score (ECogPT 
Mem), the patient-reported total score (ECogPT Total), 
the study partner-reported memory score (ECogSP 
Mem), and the study partner-reported total score 
(ECogSP Total).

In ADNI dataset, the average ECog assessment scores 
provided by study partners are slightly higher than the 
participant test score, 2.14 vs 2.07 for the memory test 

Fig. 1 ECog participant score vs study partner score: memory (left) 
and total (right)
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scale and 1.82 vs 1.68 for the total test scale, as seen in 
Fig. 1.

As seen in Fig.  2, the participants can be categorised 
into five groups in baseline clinical diagnosis: AD, EMCI 
(Early MCI), LMCI (Late MCI), SMC (Subject Memory 
Concern), and CN (Cognitive Normal). The gender ratio 
is 1.23: 1 with males exceeding females by approximately 
23%. The average age of the participants was 73.8, rang-
ing from 54.4 to 91.4. Participants averaged 7.3 visits 
to the clinical centres during the period of study. Their 
educational level ranged from 4 to 20 years with an aver-
age of 16  years. The majority of the participants classi-
fied their race as white (1605 out of 1737). In regard to 
marital status, 1311 participants were married, while the 
other 410 were widowed, divorced, or single.

Before pre-processing, the average ECogPT score was 
lower than the ECogSP score for both memory and total 
scores. This indicates the study partner considered the 
cognitive decline to be greater than what the partici-
pant self-rated. Interestingly when selecting for baseline 
diagnosis the same trend was retained for the AD group 
but was completely opposite for the NL group in which 
the participants estimated their cognitive decline to be 
greater than their study partner reported.

Compared to the other cognitive tests, ECog is fairly 
new, having been introduced in 2008. Hence, it was not 
included in ADNI 1 and ADNI GO as part of the clini-
cal testing, however in ADNI 2, returning patients from 
1 and GO were tested using ECog. This has resulted in 
some participants within the study having no ECog 
scores recorded during their baseline visit but during 
subsequent visits. To include such participants in our 
experiment, we adjusted all baseline visits to be the sub-
ject’s first visit when ECog test scores were taken.

Any prior visits from these participants where ECog 
scores were missing have been removed and two new fea-
tures have been created:

‘Month_Adjusted’ for recording the month of visit 
since first ECog test score was taken
‘DX_bl_Adjusted’ for recording the diagnosis made by 
clinicians at the adjusted baseline.

Due to a new baseline being introduced, some of the 
data requires further processing so that it is aligned with 
the new baseline. The missing values in ‘EcogPtMem_bl’, 
‘EcogPtTotal_bl’, ‘EcogSPMem_bl’, and ‘EcogSPTotal_bl’ 
which record the bassline scores for each ECog version 
have been amended. Also, to simplify and align the diag-
nostic outcomes:

The original baseline diagnostic categories of AD, 
LMCI, EMCI, SMC and CN have been reclassified to 
AD, MCI (LMCI + EMCI) and NL(SMC + CN).
The final clinical diagnostic categories of AD, AD to 
MCI, MCI, MCI to AD, MCI to NL, NL, and NL to 
MCI have been reclassified as AD (AD, MCI to AD), 
MCI (AD to MCI, MCI, NL to MCI), and NL (MCI to 
NL, NL).

Another new feature, ‘MCI_Change’ has also been 
introduced to explore the correlation between the ECog 
score and the baseline MCI participants who have pro-
gressed to AD, and the participants who remain as MCI. 
This feature has three possible values: “Not MCI” if the 
participant is not diagnosed with MCI at baseline, “No 
Change” if the participant was diagnosed with MCI at 
baseline and diagnosed with MCI during their last visit 
within 48 months. Finally, “MCI to AD” if the participant 
was diagnosed with MCI at baseline but diagnosed with 
AD during their last visit within 48 months.

Considering the adjusted baseline, the number of 
returning visits declined over a period of 72 months. In 
fact, the number of visits dropped to only 32.6% of par-
ticipants after 48  months, and 13.2% after 60  months. 
Therefore, it makes sense for this study to limit the time 
period to 48  months, otherwise the analysis outcome 
could be skewed significantly due to the participant drop 
off.

After the above pre-processing has been performed, 
only 1183 participants are left in the dataset, 544 female 
and 639 male, aged from 55–91, and the number of par-
ticipant diagnosed as MCI is more than twice those with 
AD. the average age and education level of the partici-
pant among three diagnosis groups remained very similar 
trough pre-processing.

Fig. 2 Baseline diagnosis, gender and boxplot for age



Page 6 of 11Thabtah et al. Health Inf Sci Syst            (2020) 8:24 

Methodology
We have followed the methodology demonstrated in 
Fig.  3 throughout our analysis. Firstly, we obtained the 
publicly available ADNI TADPOLE dataset [34] and 
undertook research and some descriptive analysis to gain 
an understanding of the domain and dataset. Shown in 
“Literature review” section, our research was focused on 
longitudinal analysis projects using the ADNI dataset as 
well as some background study on Alzheimer’s disease 
and the ECog test. Descriptive analysis in shown above in 
“Dataset description” section and includes distributions 
of Diagnosis and ECog scores in addition to demographic 
information and dataset background.

Next, based on some issues we found in the dataset 
which are described in “Dataset description” section 
we underwent a significant pre-processing phase. This 
Included removing features not related to ECog scores, 
Diagnosis, and visit information, removing instances 
with missing ECog Scores including visits prior to the 
ECog test being introduced in ADNI, and limiting the 
instances we use to visits within 48 months of a subject’s 
baseline visit since there is a significant drop of returning 
visits after that time period.

We performed some simple linear regression analysis 
and used the program: Tableau to create a selection of 
visualisations that demonstrate the difference in ECogSP 
and ECogPT scores overtime. Pearson’s product-moment 
r, or r coefficient, was used to calculate the correlation 
between ECog test scores overtime. The absolute of coef-
ficient r can lie between 0 and 1, where 0 indicates no 
correlation and 1 indicates a perfect linear association. 
Furthermore, a positive r shows that any addition in one 
variable leads to an increase of the other variable, while a 
negative r shows any subtraction in one variable leads to 
a decrease of the other variable.

We employed different classification algorithms includ-
ing RIPPER, PART, C4.5, and Random Forest on three 
feature sets: ECogSP scores with demographic informa-
tion, ECogPT scores with demographic information, and 
only demographic information to assess each test ver-
sion’s ability to predict the progression of MCI subjects 
to AD from baseline test scores. tenfold cross validation 
was used to produce evaluation metrics for each model. 
Accuracy, precision, and recall were recorded for each 
model over 10 experimental runs and their averages 
reported in “Data analysis” section. A paired corrected 
t-test (with p < 0.05) was used to determine if differences 
in model performance across feature sets was statistically 
significant.

To reduce class imbalance in the data used to train 
classification models we employed the SMOTE method 
to create a resampled dataset to reduce any possible bias 
toward the majority class in the dataset. The machine 
learning experiment was then repeated on the new res-
ampled data and the performance of models trained on 
the resampled dataset was compared to models trained 
using the original dataset.

Data analysis
Data visualisations demonstrate the trend in ECog Total 
scores over time for the three diagnostic groups: AD, 
MCI, and NL, and show the differences in trend for MCI 
patients who progress to AD, and MCI patients who 
remain with MCI diagnosis within 48  months. Correla-
tion analysis is appropriate for this data since it can reveal 
the relationship between ECog score and the months 
since baseline visit, to determine if the ECog score 
changes over time. The analysis has been conducted in 
the Tableau Desktop 2019.4.0 platform and performed on 
an i7 desktop with 32 GB RAM.

Fig. 3 Methodology graph

Fig. 4 Average ECogSP Total vs average ECogPT total scores over-
time
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In Fig. 4, the average ECog scores between participants 
and study partners are plotted against each other side-by-
side. The difference between these ECog scores isn’t obvi-
ous with very similar gradient and intercept and clearly 
both have a downward trend. Both r coefficients are very 
similar, -0.351 for ECogSP and -0.429 for ECogPT, which 
means the study partner’s average ECog score is more 
correlated to the months since baseline visit than the 
participant’s average ECog score. This also indicates that 
the average ECog scores are reducing over the course of 
48  months, which means the overall cognitive degrada-
tion has reversed and the participant’s health is improv-
ing. The most likely reason behind this outcome is the 
effect of averaging, i.e. extreme outliers distorting the 
central tendency as visits drop off overtime.

To investigate further, instead of averaging all ECog 
scores regardless of the diagnosis, the average total ECog 
scores have been plotted against the visit month for three 
different diagnosis groups: AD, MCI, and NL (control 
group) as seen in Fig. 5a and b. Figure 5a shows the aver-
age ECogSPTotal score over time, the trends are distinctly 
different among the three groups. The r coefficients for 
AD, MCI, and NL are 0.777, 0.724, and 0.686 respectively. 
In respect to month of visit, the average ECogSP score for 
the AD group is more correlated than for the MCI and 
NL group. The AD group has the highest average ECogSP 
score which has increased drastically over time; this was 

expected due to confirmed AD diagnosis. Both the MCI 
and NL group have a significantly lower average ECogSP 
score in comparison to the AD group.

In Fig.  5b, the trends are similar in the three groups, 
except for the AD group which has more fluctuation. An 
explanation for this is the decrease of visits in certain 
months. The average ECog score for all three groups is 
slightly trending down indicating that the participant’s 
cognitive function has marginally improved over time. 
The r coefficients for AD, MCI, and NL are -0.077, -0.036, 
and -0.350 respectively. However, by comparing this to 
Fig.  5a, the average ECogSP score has increased over 
time, which is completely opposite to the trends of the 
average ECogPT score. This indicates that the patient 
reported ECog score is less reliable compared to the 
study partner reported ECog score, since the very nature 
of AD is a worsening progression and seldom getting bet-
ter. This result is consistent with other research findings 
[7, 29] who found patient reported memory complaints 
to be less accurate compared to study partner reported 
complaints. In both Fig.  5a and b, the average of ECog 
scores for MCI groups is very steady for both study part-
ner and participant, with r coefficients 0.724 and -0.036 
respectively.

In Fig.  6a and b, the average ECog scores for partici-
pants who at baseline were diagnosed with MCI and 
had no subsequent change in diagnosis has been plotted 
side-by-side to MCI participants who have progressed 
into AD within 48 months. In Fig. 6a, the progression in 

Fig. 5 a Average ECogPT total score over time for partner. b Average 
ECogPT total score over time for participant

Fig. 6 a MCI no change vs MCI to AD, average ECogSP total score. b 
MCI no change vs MCI to AD, average ECogPT total score
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EcogSP score from the “MCI to AD” group can be clearly 
seen where the average ECogSP score has increased from 
2.158 to 2.906 in 48 months with an r coefficient of 0.827, 
while the MCI “no change” group remains between 1.615 
and 1.780 with an r coefficient of 0.487.

However, regarding the average ECogPT score, there 
are different trends between these two groups. In the 
MCI “no change” group, the trend is slightly downward 
and ranging from 1.872–1.722, with an outline score of 
2.244 and r coefficient of -0.431. In the “MCI to AD” 
group, the trend is upward and in the range of 1.879–
2.073, with an r coefficient of 0.345 and a few outliers. 
Those outliers can be explained by a lower visit number 
in certain months. When comparing Figs. 6a and b, the 
prior discovery of ECogPT scores tending to be lower 
than ECogSP scores has stayed true in the MCI group 
who progressed into AD within 48  months. Yet, the 
ECogPT score in MCI no change group tends to slightly 
underestimate their cognitive decline when the ECogSP 
score remains constant.

It should be noted that there exists a large variation in 
ECog scores for subjects from all groups, so while taking 
the average of ECog scores can show the trend for differ-
ent groups over time, individual participants ECog scores 
do not always follow these trends.

Machine learning results
To evaluate each version of the ECog test’s ability to 
predict a progression from MCI patients to AD within 
48 months, we undertook a machine learning experiment 
using the Waikato Environment for Knowledge Analy-
sis (WEKA) [18] tool version 3.8.3 on a device with an 
2.80 GHz, i7 processer, and 16 GB of RAM.

Three feature sets were created from patients diagnosed 
with MCI at baseline. Firstly, a feature set consisting of 
only demographic features: Participant’s age, gender, 
years of education, and race were used as a benchmark. 
Secondly a feature set with demographic features plus 
ECogPT Total and ECogPT Mem scores, and thirdly a 
feature set with demographic features plus ECogSP Total 
and ECogSP Mem scores. The MCI_Change feature as 
described in “Dataset description” section was used as 
the class; since we are limiting to participants diagnosed 

with MCI at baseline it has two possible values: “No 
Change” and “MCI to AD”.

RIPPER, PART, C4.5, and Random Forest classifica-
tion algorithms were used to train a total of 12 predic-
tive models. Default WEKA parameters were used in all 
cases. The models were evaluated using tenfold cross val-
idation. Using 10 repetitions the mean values of the per-
formance metrics: accuracy, precision, and recall, were 
recorded for the models derived by the machine learning 
algorithms.

All classification models trained had unsatisfactory 
precision and recall rates and couldn’t be confidently 
used as a predictor of MCI to AD progression as shown 
in Table 1. One of the principal reasons for the low pre-
cision and recall rates is the data imbalance issue with 
respect to the class label—this caused the machine learn-
ing algorithms to ignore the minority class, i.e. “MCI to 
AD”. However, the differences in performance for models 
trained on separate feature sets are interesting and align 
with the findings of the previously described trend analy-
sis. Models trained on the ECogPT with a demographics 
feature set were not found to have a significantly differ-
ent performance than models trained on the benchmark 
demographics feature set. It should be noted that of the 
560 subjects with MCI at baseline, only 132 (24%) pro-
gress to an AD diagnosis within 48  months indicating 
there is an issue of class imbalance. This, along with lack 
of information in the features, has caused some of the 
models to classify all instances as “No Change” result-
ing in biased accuracies of nearly 76% for most of the 
machine learning algorithms.

To reduce the issue, SMOTE resampling technique was 
employed on the set of all baseline MCI visits to generate 
more instances for the minority class; in this case “MCI 
to AD”. This pre-processing operation was completed 
using WEKA’s SMOTE package with all default param-
eters, aside from the percentage of instances to generate 
which was set to 200% of the minority class. This resulted 
in a new dataset of 824 instances of which 396 (48%) 
belong to the “MCI to AD” class. The machine learning 
experiment was repeated using the resampled dataset 
and the results can be seen in Table 2.

Table 1 Performance of classification models

Demo Demo + ECogPT Demo + ECogSP

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

RIPPER 0.7602 0.1078 0.0023 0.7636 0 0.0008 0.7895 0.6071 0.2995

PART 0.7536 0.2458 0.0234 0.7434 0.281 0.0365 0.7695 0.5155 0.2974

C4.5 0.7643 0 0 0.7632 0 0.0008 0.7875 0 0.3091

Random forest 0.7191 0.3451 0.2013 0.7268 0.2667 0.0892 0.7839 0.5882 0.3387
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After resampling, the precision and recall of models 
trained on all three feature sets improved greatly. Again, 
the models trained on the ECogSP with a demographics 
feature set performed better than the models trained on 
the ECogPT with demographics and only demographics 
feature sets. Random Forest when used to process the 
ECogSP with a demographics feature set produced the 
highest performing model in terms of accuracy and pre-
cision with 0.7834 and 0.7681 respectively, and a recall of 
0.7919. The model trained on the same feature set using 
PART achieved the highest recall of 0.8701 with an accu-
racy of 0.7147 and recall 0.6544.

Conclusions
AD is one of the leading issues in health care today. 
While there is currently no cure for AD, once a patient is 
promptly diagnosed there are treatments that can be fol-
lowed to improve the patient’s living conditions and help 
them to maintain their independence. It is evident from 
the correlation analysis presented in this paper that there 
is a difference between ECogSP and ECogPT scores over 
time, particularly in participants who are diagnosed with 
AD at baseline or participants who are diagnosed with 
MCI at baseline but then progress to AD at a subsequent 
visit. We found that the average participant reported 
ECogPT score trends to be slightly down over time in all 
baseline diagnosis groups: NL, MCI, and AD indicating 
an improvement in cognitive ability. However, the aver-
age study partner reported ECogSP score trends upwards 
for AD participants and MCI participants who later pro-
gress to AD while remaining fairly stable over time for 
NL participants and MCI participants who do not pro-
gress to AD. We also found that there was a significantly 
different average ECogSP score at baseline between the 

diagnosis groups compared to a smaller difference for the 
average ECogPT scores at baseline.

In addition, we have completed a machine learning 
experiment to evaluate if it is possible to build a model 
that can predict if a patient with MCI will progress to 
AD within 48 months based on ECog scores and demo-
graphic information. While the models initially cre-
ated performed poorly in terms of precision and recall, 
after resampling using SMOTE to reduce class imbal-
ance the results in terms of recall and precision of mod-
els increased greatly. Random Forest algorithms derived 
more competitive predictive models after resampling 
when compared with the other considered classification 
algorithms, making it a suitable classifier for predicting 
progression of AD, at least on the dataset we considered. 
In all cases, the models that used the ECogSP versions 
of the test performed significantly better than models 
trained using the ECogPT version or the demographics 
alone. This reiterates the finding that the study partner-
reported version of the ECog test is a better indicator of 
progressing AD.

Participants in the ADNI study diagnosed as having 
MCI or AD tend to report better cognitive ability in the 
ECog Test than reported about them by a study partner. 
MCI or AD participants appear to report consistent cog-
nitive ability over time despite the progressive nature of 
the disease.

By taking the mean values of ECog scores at each time 
point we lose the individual element of the longitudinal 
data, therefore a more in-depth approach including lon-
gitudinal modelling would be needed to substantiate our 
findings. This paper could be expanded in future work 
by using a longitudinal model to evaluate the correla-
tion between ECogPT and ECogSP scores over time. In 

Table 2 Performance of classification models after SMOTE

Demo Demo + ECogPT Demo + ECogSP

Accuracy Precision Recall Accuracy Precison Recall Accuracy Precison Recall

RIPPER 0.6239 0.6137 0.5956 0.6342 0.6257 0.6038 0.6971 0.6929 0.6729

PART 0.6291 0.6002 0.6523 0.6524 0.6213 0.7333 0.7147 0.6544 0.8701

C4 0.6291 0.6046 0.6805 0.653 0.6232 0.7163 0.725 0.683 0.8101

Random forest 0.7432 0.7391 0.7256 0.7339 0.7246 0.7273 0.7834 0.7681 0.7919
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addition, the six ECog sub scores which measure indi-
vidual cognitive domains could also be assessed for both 
versions of the test.

Appendix
See Table 3.
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